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ABSTRACT

Matrix factorization algorithms are emerging as popular tools in many appli-

cations, especially dictionary learning method for recovering biomedical image data

from noisy and ill-conditioned measurements. We introduce a novel dictionary learn-

ing algorithm based on augmented Lagrangian (AL) approach to learn dictionaries

from exemplar data and it can be extended to general matrix factorization problems

due to different constraints. Specifically, we use the alternating minimization strategy

to decouple the dictionary learning scheme into three main subproblems, which can

be solved efficiently. The proposed algorithm can accommodate arbitrary priors on

the dictionary, which enables us to inject prior information into the learning process.

We validate the algorithm using simulated data and demonstrate its utility in the con-

text of denoising. Comparisons with existing methods show a considerable speedup

over other methods. More importantly, we observe that the proposed algorithm is

able to recover the dictionaries correctly, even at high sparsity levels and is relatively

insensitive to initialization.
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CHAPTER 1
INTRODUCTION

The factorization of a given matrix Y into two matrices D and X is a clas-

sical problem with wide-ranging applications. Since this factorization is not unique,

several constraints or penalties were introduced on the factors to make the prob-

lem well-posed and have desirable solutions. For example, the widely used principal

component analysis (PCA) [7, 10] factorization can be formulated as a matrix factor-

ization scheme with low-rank constraints. Similarly, non-negativity constraints can

be used to obtain non-negative matrix factorization [16]. In the recent years, several

researchers have considered sparse matrix factorizations in the context of dictionary

learning. Most of the classical dictionary learning algorithms focus on sparsity pro-

moting `1 norm on the coefficient matrix X, while the columns of the dictionary D

is constrained to have unit norm. Even though these problems can be generalized

to a uniform form, they are solved using different algorithms and there is no general

frame currently. Therefore, we aim to propose a fast algorithm for general matrix

factorization. In this thesis, we focus on the problem of dictionary learning, but the

proposed algorithm is able to extend to general matrix factorization.

The recovery of image data from noisy and ill-conditioned measurements is a

common problem in many biomedical inverse problems. Algorithms that rely on the

sparsity of the signal in pre-determined dictionaries have shown to be highly effective

in practical applications. While classical schemes rely on analytical dictionaries (eg.

discrete cosine transform, wavelets), Several dictionary learning algorithms (e.g. K-
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SVD, MOD) [1, 5, 22] in which the dictionaries and their coefficients are learned from

the under-sampled data directly, have been introduced in the recent years and this

strategy is far more effective in ill-posed inverse problems than using pre-determined

atoms.

However, one of the main challenges associated with these algorithms is their

high computational complexity, especially when applied to large scale imaging prob-

lems. Another challenge is the non-convexity of the criterion, which makes the algo-

rithms vulnerable to local minima. Current methods rely on initializing the algorithm

with good initial guesses (e.g. discrete cosine transform) to obtain good solutions.

Therefore, it is important to find an effective algorithms that are less sensitive to

initialization to obtain good dictionaries. In addition, most of those algorithms such

as K-SVD and MOD have the scale ambiguity problem. To address this problem,

we usually assume atoms with unit column norms. However, some researchers have

argued for the use of other convex constraints (e.g. bounded Frobenius norm, spar-

sity of the basis functions) to inject prior information into the dictionary learning

algorithms. The majorize-minimize framework was introduced in [22] to introduce

more flexible priors. This scheme alternates between the minimization of two differ-

ent majorizations of the criterion and a projection to the convex dictionary constraint

set. We observe this method to be computationally expensive, mainly because of the

steepest descend algorithms used to minimize the majorizations and the discrepancies

between the different steps.

To address the challenges above in dictionary learning, we aim to develop a
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novel matrix factorization algorithm in this thesis and extend it to solve general ma-

trix factorization problems. We formulate the dictionary learning problem as a con-

strained optimization problem, where the linear combination of the data-consistency

and a sparsity penalty on the coefficients is minimized, subject to a dictionary con-

straint. Based on the recent success of non-convex sparsity penalties [20, 2, 9], we

consider `p : p < 1 norm on matrix entries to get the sparse representation. We in-

troduce an auxiliary variable that is constrained to be equal to the coefficient matrix;

this approach enables us to transfer the sparsity penalty onto the auxiliary variable

from the coefficient matrix. And then, the augmented Lagrangian (AL) framework

is used to impose the equality constraint [8]. We also introduce another auxiliary

variable that is constrained to be equal to the dictionary and use the AL framework

to enforce the equality constraint. Next, we use a projection step as in [22] to enforce

constraints on the dictionary. We expect this approach to yield smoother and faster

convergence. The proposed iterative algorithm proceeds by alternating between three

simple steps:

1. update the auxiliary variable on coefficient matrix, which involves an analytical

shrinkage,

2. update the coefficient matrix as a quadratic optimization problem, and

3. update the dictionary by solving a constrained subproblem.

We solve for the first quadratic sub-problem of updating the coefficients analyti-

cally. The constrained subproblem of updating the dictionary is solved using the AL

scheme to enforce another auxiliary variable equality problem and using the projec-
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tion method to enforce dictionary constraints. Since all of the above steps are simple,

we obtain a computationally efficient algorithm.

We determine the utility of the proposed algorithm using simulated data as

well as in the context of MR image denoising. The results in the simulations show

that the proposed algorithm is considerably faster than the classical methods, while

yielding dictionaries that are closer to the original at almost all sparsity levels. We also

observe that the improved dictionaries translate to improve denoising performance.

While we only demonstrate the utility of the algorithm in denoising, we expect this

scheme to be useful in other biomedical applications including recovery from under

sampled data and tomography.

The rest of thesis is organized as follows: Chapter 2 presents the background

of some popular matrix factorization problems and reviews the principle of the aug-

mented Lagrangian method which we have used in our proposed algorithm. The

proposed algorithm is introduced in Chapter 3. Chapter 4 is devoted to experimental

results which demonstrating that our algorithm has lots of good properties.
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CHAPTER 2
BACKGROUND

2.1 Introduction of Popular Matrix Factorization Problems

Matrix factorization arises in a wide range of application domains and many

problems can be posed as matrix factorization problems. In this thesis, we discuss

some famous matrix factorization problems based on different constraints. The widely

used Principal Component Analysis (PCA) [7] can be formulated as a matrix factor-

ization scheme with low-rankedness constraints. Low-rankedness is useful for learning

a lower dimensionality representation. Besides, sparse PCA [10] can be used to find

local features that constitute the dataset, for example parts of faces, for a dataset

of facial images. Independent Component Analysis (ICA) [11] has statistic indepen-

dent constraints on subcomponents and is feasible for processing multidimensional

data. Similarly, nonnegativity, which is a natural constraint when modeling data

with physical constraints, such as chemical concentrations in solutions, pixel inten-

sities in images and radiation dosages for cancer treatment, can be used to obtain

non-negative matrix factorization (NMF) [16]. NMF offers a good model for additive

data such as text or images. Since sparsity is useful for modeling the conciseness of

the representation or the latent features, several researchers have considered sparse

matrix factorization in the context of dictionary learning which is very good for image

reconstruction [1].
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2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is an essential tool for data analysis

and unsupervised dimensionality reduction. Using PCA, a multivariate dataset can be

represented by a sequence of orthogonal components that convert a set of observations

of possibly correlated variables into a set of values of linearly uncorrelated variables.

By capturing directions of maximum variance in the data, the principal components

offer a way to compress the data with minimum information loss. PCA has been

widely studied and used in pattern recognition and signal processing, such as data

compression, feature extraction, noise filtering, signal restoration and classification

[13].

Let the data Y be a M × N matrix, where M and N are the number of

observations and the number of variables, respectively. Without loss of generality,

assume the variables contained in the columns of Y are centered. Let the SVD of Y

be

Y = TΣVT

then U = TΣ are the principal components (PCs), and the columns of V are the

corresponding loadings of the principal components. Usually a small number of PCs

are chosen to represent the data, thus a great dimensionality reduction is achieved.

The synthesis view of PCA can be written as

min
U,V

1

2

∥∥Y −UVT
∥∥2
F

subject to VTV = I (2.1)

where columns of U and V represent PCs and PC loading vectors respectively. How-

ever, each principal component in 2.1 is a linear combination of all the original vari-
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ables, thus it is often difficult to interpret the PCs, especially when M is large as

frequently encountered in practical applications. To overcome this problem, a new

approach for estimating PCs with sparse loadings, which is called sparse principal

component analysis (SPCA), has been proposed.

Note that there are many different formulations for the SPCA problem. The

one implemented here is based on the SPCA method in [7] for identifying sparse

components as a regularized low-rank matrix approximation

min
U,V

1

2

∥∥Y −UVT
∥∥2
F

+ Pλ(V) subject to ‖ui‖`2 = 1 (2.2)

In [7], the regularization function Pλ(V) has been considered as the soft thresholding

(or `1 or lasso), the hard thresholding, and the smoothly clipped absolute deviation

(SCAD). Traditionally, an iterative algorithm is considered to minimize (2.2) with

respect to U and V. Firstly, consider the problem of optimizing over U for a fixed

V. And then solve the problem over V for a fixed U. This problem 2.2 is convex

with respect to U for fixed V and vice versa. It is however not jointly convex in the

pair (U, V). Therefore, the convergence rate of this iterative alternating algorithm

is slow.

2.1.2 Independent Component Analysis

Since PCA relies completely on second-order statistics of the data, it is im-

portant to develop a new computational tool for analyzing multidimensional data.

So Independent component analysis (ICA) is proposed. It can separate a multivari-

ate signal into additive subcomponents that are maximally independent. ICA has
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been widely used on revealing interesting information on brain activity from electri-

cal recordings of an electroencephalogram (EEG) and feature extraction. In signal

processing, ICA is used to find suitable representations for image, audio or other kind

of data for tasks like compression and denoising.

One of the ICA models where noise is taken into consideration takes the form

[12]

Y = DX + E

where Y = [y1, ...,yN ] is the given observation signals, D ∈ RM×K denotes the regres-

sors, X = [x1, ...,xN ] denotes independent components, and E = [ε1, ..., εN ] represents

noise. The problem of ICA is to estimate unknown constant D and independent X

from the noisy data Y.

One way to approach this noisy ICA problem is maximizing joint likelihood

[12, 18]. The densities Pi(·) of the xi are usually known or already approximated.

Assume that the noise is Gaussian distributed with known covariance matrix Σ and

is independent of each other for different variables. Then, the joint log-likelihood

function can be represented as

L(D,X) = −
N∑
j=1

[
1

2
‖yj −Dxj‖2Σ−1 +

K∑
i=1

(− logP (xi,j))

]
+ C

where ‖e‖2Σ−1 is defined as eTΣ−1e, and C is an irrelevant constant. Since here we

assume Σ is known, the problem of maximizing L(D,X) can be rewritten as

min
D,X

1

2

∥∥∥Ỹ−DX̃
∥∥∥2
F

+
N∑
j=1

K∑
i=1

(− logP (xi,j)) (2.3)
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where Ỹ = YΣ−1/2 and X̃ = XΣ−1/2. The expectation-maximization (EM) al-

gorithm provides a general iterative approach for computing maximum likelihood

estimates. A problem with the EM algorithm is, however, that the computational

complexity grows exponentially with the dimension of the data.

2.1.3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) [16] is useful for finding representa-

tions of non-negative data. The non-negativity constraints make the representation

purely additive (allowing no subtractions), in contrast to many other linear represen-

tations such as PCA and ICA. NMF has been applied to many areas such as images

analysis [16, 21], document clustering [15], data analysis [14], etc.

Given a matrix Y of size M ×N , the model of NMF can be described as

min
D,X

1

2
‖Y −DX‖2F such that D ≥ 0,X ≥ 0 (2.4)

To address this problem, [16] devised a multiplicative algorithm that is simple to im-

plement and also shows good performance. However, it lacks optimization properties

[6]. The gradient algorithms [19] have been proposed for this optimization. Gradient

descent method is simple to implement, but convergence can be slow.

2.1.4 Dictionary Learning

Dictionary learning is the process of finding a dictionary D in which a given

set of training samples Y has sparse approximation X. It has been widely used in

image denoising, compression, regularization in inverse problems, feature extraction

[1, 4]. The task of computing a representation for samples can be formally described
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by

min
D,X

1

2
‖Y −DX‖2F such that ‖xi‖0 ≤ L (2.5)

where xi represents the ith column of X and L is the sparsity.

Note that the data consistency term in (2.5) is dependent on the product DX,

while the penalty term is only dependent on X. If no constraint is applied on the

dictionary D, the optimization (2.5) will result in arbitrarily small coefficients. To

avoid this scale ambiguity problem, it is a common practice to constrain the dictionary

to unit column norm. Besides, the `0-norm minimization problem is NP hard. It is

replaced by convex surrogate, the `1 norm. The `1-norm minimization problem is

more popular because its envelope is convex and therefore easier to theoretically

analyze [17]. Therefore, the problem (2.5) becomes

arg min
D,X

1

2
‖Y −DX‖2F + λ ‖X‖`1 such that ‖di‖`2 = 1 (2.6)

where di represents the ith column of D.

To address this problem, most of the current algorithms alternate between the

estimation of the sparse coefficients X, assuming the dictionary to be known, and the

dictionary atoms D, assuming the coefficients to be known.

2.2 Review of the AL Approach

In this section, we will review the basic idea of the augmented Lagrangian

(AL) algorithm. We first consider the general constrained problem

min
x

f (x) = f (x1, x2, ..., xn) (2.7)
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subject to ci (x) = 0, i = 1, ...,m.

Then, we can have the Lagrange function as

L (x, λ) = f (x) + λTc (x) (2.8)

= f (x) +
m∑
i=1

λici (x) , (2.9)

where the vector λ = (λ1, ..., λm)T is the Lagrange multiplier estimate.

If x∗ is the solution to the problem, then x∗ is a stationary point of L(x, λ∗)

and we have

∇xL (x∗, λ∗) = ∇f (x∗) +∇Tc (x∗)λ
∗

= 0; (2.10)

∇λL (x∗, λ∗) = c (x∗) = 0.

To satisfy these conditions, an alternate iterating method is applied with respect to

x and λ. The updating rule for λ is

λk+1= λk − hc(xk)

where h is the step size. This steepest descent scheme is easy to implement, but it

converge slow and it is hard to choose appropriate h to guarantee convergence. To

address those problems, the augmented Lagrangian method [8] is proposed and its

function can be written as

L (x, λ, µ) = f (x) + cT (x)λ+
1

2
µ ‖c (x)‖2 (2.11)

= f (x) +
m∑
i=1

λici (x) +
1

2
µ

m∑
i=1

ci (x)2 , (2.12)
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where µ is the penalty parameter. According the KKT conditions,

∇xL (xk, λk, µk) = ∇f (xk) +∇Tc (xk)λk + µk∇Tc (xk) c (xk) (2.13)

= ∇f (xk) +∇Tc (xk) (λk + µkc (xk)) (2.14)

The sequence x may converge to the minimum point x∗ only if λk → λ∗. Compare

(2.14) and (2.10), we can deduce

λ∗ ≈ λk + µkc (xk) (2.15)

By rearranging this expression, we get

c (xk) ≈ −
1

µk
(λ∗ − λk)

so we conclude that if λk is close to λ∗, we can obtain a good estimate of x∗ even

when µk is not particularly large. Also, (2.15) suggests a formula similar to (2.2) in

classic Lagrange method for updating the estimate λk by

λk+1 = λk + µkc (xk) (2.16)

and we initialize the penalty parameter µk > 0 as a small value and gradually increase

it.
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CHAPTER 3
METHODOLOGY

In this chapter, we will propose a fast algorithm for general matrix factorization

problems. First, we generalize an uniform formula for matrix factorization problems

according to different constraints. To minimize this objective function, a novel scheme

based augmented Lagrangian approach is developed. Then, we use the alternating

minimization strategy to decouple the scheme into three main subproblems, which can

be solved efficiently. As an example, we focus on applying the proposed algorithm

on dictionary learning problem with different dictionary constraints which can be

extended to many other matrix factorization problems.

3.1 The Objective Function

The approximation of matrix factorization problems can be generalized as

arg min
D,X

1

2
‖Y −DX‖2F + λϕ(X) such that D ∈ ∆ (3.1)

where ϕ(X) and ∆ are constraints on X and D. Depending on the constraints utilized,

the resulting factors show very different representational properties and the problem

can be used in different applications.

• PCA

From (2.1), we can get the objective function of PCA problem

min
D,X

1

2
‖Y −DX‖2F such that XTX = I (3.2)
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Here, PCA enforce a constraints on X. For SPCA case, if we consider representative

`1-norm penalty (‖V‖`1) as Pλ(V), then formula (2.2) can be rewritten as

min
D,X

1

2

∥∥∥Ỹ−DX
∥∥∥2
F

+ λ ‖D‖`1 such that
∥∥xi∥∥

`2
= 1 (3.3)

where xi represents the ith row of X; Ỹ = YT ; D = V; X = UT . Problem (3.3)

is similar to dictionary learning problem which we will discuss later. SPCA prob-

lem enforces sparsity penalty on dictionary D and row-norm constraints (similar to

column-norm constraints in dictionary learning) on coefficient matrix X.

• ICA

In ICA problem, we assume that the density of the independent components

is double exponential (Laplace), which is a classical example of a supergaussian dis-

tribution. Many real applications, such as feature extraction and speech processing,

show this distribution. Therefore, we have

− logP (xi,j) =
√

2 |xi,j|+ C
′

where C
′

is an irrelevant constant. Thus, our problem becomes

min
D,X̃

1

2

∥∥∥Ỹ −DX̃
∥∥∥2
F

+
√

2σ
∥∥∥X̃∥∥∥

`1
(3.4)

Note that this problem of finding independent X is formally equivalent to that of

dictionary learning. In our case, however, the `1 norm arises from the Laplacian prior

rather than the sparsity prior.

• NMF
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The objective function of NMF problem has been presented in (2.4)

min
D,X

1

2
‖Y −DX‖2F such that D ≥ 0,X ≥ 0 (3.5)

It can be seen as non-negativity constriants on D and X.

• DL

Extended from (2.6), the dictionary learning problem can be mathematically

formulated as

arg min
D,X

1

2
‖Y −DX‖2F + λϕ(X) such that D ∈ ∆ (3.6)

Here, ϕ(X) is the sparsity prior, Y = [y1,y2, ..,yN ] and X = [x1,x2, ..,xN ] are the

data and coefficient matrices, respectively. To avoid this scale ambiguity problem, it

is a common practice to constrain the dictionary to a class specified by ∆.

3.2 A Fast Algorithm Design

We first use the variable splitting approach to rewrite (3.1) as

min
D,X,Z

1

2
‖Y −DX‖2F + λϕ(Z) such that X = Z; D ∈ ∆ (3.7)

Here, Z is an auxiliary variable used to simplify the optimization process. Using the

AL framework to enforce the constraint (X = Z) in (3.7), we get the augmented

Lagrangian function as

Lβ (X,Z,D) =
1

2
‖Y −DX‖2F+λϕ(Z)+λ 〈Λ,X− Z〉+λβ

2
‖X− Z‖2F such that D ∈ ∆

(3.8)

where Λ is the matrix of Lagrange multipliers and β is the penalty parameter. The

inner product of two matrices is specified by 〈A,B〉 = trace(ATB). The proposed
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algorithm then alternates between the updates of the variables X, Z, D as well as

the associated Lagrange parameters. The pseudocode for this algorithm is presented

in Algorithm 3.1 and the update steps are shown in details as below.

Algorithm 3.1 Scheme of the proposed algorithm

Input: Given signals Y

1: Initialization: D0, X0, Z0, Λ0, β0 > 0

2: while stop-criterion not satisfied do

3: Zn+1 = arg minZ ‖Xn − Z‖2F + 2
βnϕ(Z) + 2

βn 〈Λn,Xn − Z〉;

4: Xn+1 = arg minX
1
2
‖Y −DnX‖2F + λβn

2
‖X− Zn+1‖2F + λ 〈Λn,X− Zn+1〉;

5: Dn+1 = arg minD
1
2
‖Y −DXn+1‖2F such that D ∈ ∆;

6: Λn+1 = Λn + βn(Xn+1 − Zn+1);

7: βn+1 = ρβn;

8: end while

Output: D and X

3.2.1 Update of Z

In this step, We assume D and X to be fixed. From (3.8), we get

Lβ (Z,Xn,Dn) = ‖Xn − Z‖2F +
2

β
〈Λ,Xn − Z〉+

2

β
ϕ(Z) (3.9)
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Here, different priors for coefficients X will result in different regularizers ϕ(X). The

problem becomes

Zn+1 = arg min
Z
Lβ (Z,Xn,Dn) ,

Later, we will show how to address this optimization problem according to different

applications.

3.2.2 Update of X

To optimize (3.8) with respect to X, we keep Z and D fixed and update X as

Xn+1 = arg minX Lβ(X,Zn+1,Dn):

Xn+1 = arg min
X

1

2
‖Y −DnX‖2F +

λβ

2

∥∥X− Zn+1
∥∥2
F

+ λ
〈
Λn,X− Zn+1

〉
This quadratic subproblem can be solved using conjugate gradients algorithm. In

most cases, a few CG steps are sufficient. For small scale problems, the coefficients

can be updated analytically as

Xn+1 =
(
(Dn)TDn + λβ I

)−1 (
(Dn)TY + λβZn+1 − λΛn

)
(3.10)

Note that once the K × K matrix Q =
(
(Dn)TDn + λβ I

)−1
is pre-computed, the

coefficients for each of the dataset xn+1
i are computed as Q

(
yi + λβ zn+1

i + λΛn
i

)
.

According to the AL principle, the Lagrange multipliers Λ are updated at each

step using the rule:

Λn+1 = Λn + β(Xn+1 − Zn+1) (3.11)
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3.2.3 Update of D based on AL approach

In this step, we also use the variable splitting approach and get the update

rule from 3.8

min
D,Q

1

2
‖Y −DX‖2F such that D = Q; Q ∈ ∆. (3.12)

Here, Q is an auxiliary variable used to simplify the optimization process. Using the

AL framework to enforce the constraint (D = Q), we get the augmented Lagrangian

as

Lα (D,Q) =
1

2
‖Y −DX‖2F + 〈Γ,D−Q〉+

α

2
‖D−Q‖2F such that Q ∈ ∆.

(3.13)

where Γ is the matrix of Lagrange multipliers and α is the penalty parameter.

Solving for Q, assuming D to be fixed, we obtain

Qm+1 = arg min
Q
〈Γm,Dm −Q〉+

α

2
‖Dm −Q‖2F such that Q ∈ ∆ (3.14)

= arg min
Q

∥∥∥∥∥∥∥Dm +
1

α
Γm︸ ︷︷ ︸

Bm

−Q

∥∥∥∥∥∥∥
2

F

such that Q ∈ ∆.

Later we will use the projection scheme to solve this subproblem according to diferent

constraints ∆.

We update D as

Dm+1 = arg min
D

1

2

∥∥Y −DXn+1
∥∥2
F

+
〈
Γm,D−Qm+1

〉
+
α

2

∥∥D−Qm+1
∥∥2
F

(3.15)

This quadratic subproblem can be solved using conjugate gradients algorithm. In

most cases, a few CG steps are sufficient. For small scale problems, the dictionary
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can be updated analytically as

Dm+1 =
(
Y
(
Xn+1

)T
+ αQm+1 − Γm

)(
Xn+1

(
Xn+1

)T
+ αI

)−1
(3.16)

Also, the Lagrange multipliers Γ are updated at each step using the rule:

Γm+1 = Γm + α(Dm+1 −Qm+1) (3.17)

The detailed description of this framework is listed in Algorithm 3.2. And this

framework is flexible enough to account for arbitrary constraints on D. Later, we will

show how to use projection operators to enforce different constraints Q ∈ ∆.

Algorithm 3.2 The detailed scheme for updating dictionary D

Input: Given signals Y and X

1: Initialization: D0, Q0, Γ0, α0 > 0

2: while stop-criterion not satisfied do

3: Qm+1 = arg minQ 〈Γm,Dm −Q〉+ α
2
‖Dm −Q‖2F such that Q ∈ ∆;

4: Dm+1 = arg minD
1
2

∥∥Y −DXn+1
∥∥2
F

+ 〈Γm,D−Qm+1〉+ α
2
‖D−Qm+1‖2F ;

5: Γm+1 = Γm + αm(Dm+1 −Qm+1);

6: αm+1 = ραm;

7: end while

8: D0 = Dm

Output: D

In summary, the proposed algorithm consists of two-level nested loop. The
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inner loop updates the dictionary and enforce the constraints while the outer loop

minimizes the objective function to update the coefficient matrix and enable the

accuracy of the method. To accelerate this scheme, we choose to update dictionary

D and coefficient matrix X at the same time in the inner loop as K-SVD algorithm

does. The detailed description of this improved scheme is shown in Algorithm 3.3.

3.3 Application to Dictionary Learning

In this section, we focus on apply our proposed algorithm to address dictionary

learning problem according to different constraints on dictionary D. We will apply

Algorithm 3.3 to address the problem (3.6) according to different ∆. Since we have

already got the updating rules for X and D, the next step is to introduce the rules

for updating Z and Q.

3.3.1 Update of Z

Based on the recent success of non-convex sparsity penalty as in [20], we

consider Schatten p-norms on entries of coeffcient matrix X as the sparsity prior

ϕ(X). The `p norm better approximates the original NP hard problem than `1. It

can be specified by

‖X‖`p =

(∑
i,j

|xij|p
)1/p

, 0 ≤ p ≤ 1
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Solving for Z, we obtain

Zn+1 = arg min
Z
‖Xn − Z‖2F +

2

β
‖Z‖`p +

2

β
〈Λn,Xn − Z〉

= arg min
Z

∥∥∥∥∥∥∥∥X
n +

1

β
Λn︸ ︷︷ ︸

Tn

−Z

∥∥∥∥∥∥∥∥
2

F

+
2

β
‖Z‖`p

This problem is analytically solved by shrinkage of the entries of Tn [9]

Zn+1 =
Tn

|Tn|

(
|Tn| − 1

β
|Tn|p−1

)
+

. (3.18)

3.3.2 Update of Q

In this step, we will derive the optimum of (3.14) under different dictionary

constraints. Commonly used constraints are Frobenius-norm constraints ‖D‖2F = 1

and the column-norm constraints ‖di‖`2 = 1; 0 < i ≤ K, which are non-convex. Our

algorithm can be extented to many other constraints as listed in the following.

• Dictionaries with Convex Column-Norm Constraints

Instead of considering non-convex column-norm constraints, the convex column-

norm constraints can be defined as

∆C =
{
QM×K : ‖qj‖22 ≤ c

}
, j = 1, 2, ..., K

From (3.6), if ‖bj‖22 ≤ c, we update qj= bj. Otherwise we scale the column to have

the largest acceptable norm(c1/2).

Q∗=
{
q∗j
}
j=1,2,...,K

q∗j =

{
bj ‖bj‖22 ≤ c

c1/2

‖bj‖2
bj else

where qj and bj are the jth columns of Q and B respectively.
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• Dictionaries with Convex Frobenius-Norm Constraints

Compared with the dictionaries with column-norm constraints, the dictionar-

ies under Frobenius-norm constraints can have columns with different norms, which

means atoms with large norms have more chance to present in the approximation.

This property can improve its performance when right weights are chosen. The convex

Frobenius-norm constraints can be defined as

∆F =
{
QM×K : ‖Q‖2F ≤ c

}
,

If B ∈ ∆F , we can update Q as Q = B. Otherwise we scale B to have Frobenius-norm

c1/2.

Q∗ =

{
B ‖B‖2F ≤ c

c1/2

‖B‖F
B else

• Dictionaries with Joint Sparsity Constraints

To satisfy the requirement for small size dictionary in some application, the

joint sparsity constraint is introduced to encourage dictionary reduction. It can be

defined as

∆J = {QM×K : Jp(Q) ≤ c, p = 1, 2 or ∞} ,

Jp(Q) =
∑
j

(∑
i

|qij|p
)1/p

When p = 1, Jp(Q) = ‖Q‖l1 is the `1-norm of Q. And when p = 2, Jp(Q) =∥∥‖qj‖`2∥∥`1 is defines as the `1-`2norm of Q(‖Q‖`1-`2).

With the help of a Lagrangian multiplier θ, (3.14) becomes to

Qm+1 = arg min
Q
‖Bm −Q‖2F + θ(Jp(Q)− c). (3.19)
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A. p = 1 case

The problem turns to

Qm+1 = arg min
Q
‖Bm −Q‖2F + θ(‖Q‖l1 − c). (3.20)

This problem is analytically solved by shrinkage of the entries of Bm:

Qm+1 =
Bm

|Bm|

(
|Bm| − θ

2

)
+

.

To satisfy the constraint ∆J , we use Bisection method to find the optimal θ.

B. p = 2 case

The problem turns to

Qm+1 = arg min
Q
‖Bm −Q‖2F + θ(‖Q‖l1-l2 − c). (3.21)

To simplify it, we get

qm+1
j = arg min

qj

∑
j

∥∥bmj − qj
∥∥2
F

+ θ ‖qj‖l2 j = 1, 2, ..., K. (3.22)

where qj is the jth column of Q. According to the thresholding operator, we get the

optimal solution for (3.22)

q∗j =

{
0 ‖bj‖2 ≤

θ
2

‖bj‖2−θ/2
‖bj‖2

bj else

• Dictionaries with a Tight Frame

It is currently popular to use a fixed orthogonal bases such as wavelet bases

and adaptively chosen orthogonal bases for noise removal [3]. Therefore, we consider a

uniform normalized tight frame, that is, an orthogonal basis as dictionary constraint.
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The constraint can be defined as

∆T =
{
QM×K : QTQ = I

}
where I is the identical operator. In (3.14), the problem is to

min
Q
‖B−Q‖2F = min

Q
Tr(BTB) + Tr(QTQ)− 2Tr(QTB)

Since the first two terms are constants, the problem becomes

max
Q

Tr(QTB) such that Q ∈ ∆T

Using Lagrangian multipliers method, we define the Lagrangian function as

L(Q,Θ) = 〈Q,B〉 − 1

2

〈
Θ,QTQ− I

〉
where Θ is a Lagrangian multiplier matrix. Using the constraint QTQ = I, (3.3.2)

can be rewritten as

L(Q,Θ) = −
K∑
j=1

qTj bj +
K∑
j=1

(
θj,j
2

(qTj qj − 1) +
K∑
l>j

θj,l(q
T
j ql)

)

where qj represents the jth column of Q. By setting ∂L
∂qj

= 0, we can get

bj = θj,jqj + θj,lql

which can be written as a matrix form

B = QΩ

where Ωi,j = θj,i. If Ω is invertible, then

Q = BΩ−1
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Suppose that the SVD of B is B = UΣVT with UTU = I, and VTV = VVT = I,

then we have

Tr(QTB) = Tr
((

Ω−1
)T

BTB
)

= Tr
((

Ω−1
)T

VΣUTUΣVT
)

= Tr
((

Ω−1
)T

VΣ2VT
)

I = QTQ

=
(
Ω−1

)T
BTBΩ−1

=
(
Ω−1

)T
VΣ2VTΩ−1

Let A = VTΩ−1V, we get

Tr(QTB) = Tr
(
VT

(
Ω−1

)T
VΣ2VTV

)
= Tr

(
ATΣ2

)

I = VT
(
Ω−1

)T
VΣ2VTΩ−1V

= ATΣ2A (3.23)

To satisfy (3.23), A is a diagonal matrix with Aii = Σ−1ii . Therefore, Ω−1 =

VAVT = VΣ−1V
T

and then

Q∗ = BΩ−1 = UΣVTVΣ−1V
T

= UVT
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Algorithm 3.3 The improved scheme of Algorithm 3.1

Input: Given signals Y

1: Initialization: D0, X0, Z0,Q0, Λ0, Γ0, β0 > 0

2: while stop-criterion not satisfied (loop in n) do

3: Initialization: α0 > 0

4: while stop-criterion not satisfied (loop in m) do

5: Zn,m+1 = arg minZ ‖Xn,m − Z‖2F + 2
βnϕ(Z) + 2

βn

〈
Λn,m,Xn+1 − Z

〉
;

6: Xn,m+1 = arg minX
1
2 ‖Y −Dn,mX‖2F + λβn

2

∥∥X− Zn,m+1
∥∥2
F

+

λ 〈Λn,m,X− Zn,m+1〉;

7: Qn,m+1 = arg minQ 〈Γn,m,Dn,m −Q〉+ αn,m

2 ‖Dn,m −Q‖2F such that Q ∈ ∆;

8: Dn,m+1 = arg minD
1
2

∥∥Y −DXn,m+1
∥∥2
F

+ 〈Γn,D−Qn,m〉+ αn,m

2 ‖D−Qn,m‖2F ;

9: Γn,m+1 = Γn,m + αn,m(Dn,m+1 −Qn,m+1);

10: Λn,m+1 = Λn,m + βn(Xn,m+1 − Zn,m+1);

11: αn,m+1 = ραn,m;

12: end while

13: βn+1 = ρβn;

14: Xn,0 = Xn,m; Zn,0 = Zn,m; Dn,0 = Dn,m; Qn,0 = Qn,m; Λn,0 = Dn,m; Γn,0 = Qn,m;

15: end while

Output: D and X
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CHAPTER 4
EXPERIMENTAL RESULTS

We determine the ability of the different algorithms in recovering the synthetic

dictionaries from training data generated using them. We also demonstrate the utility

of the algorithm in the the context of patch based 2D MR image denoising [4] and

3D dynamic image denoising.

4.1 Representation Results for Synthetic Data

We consider a 20 × 40 random dictionary D with normalized columns. 1280

training samples are generated by taking weighted linear combination of its atoms.

The weights are assumed to be k-sparse, where k is a pre-determined constant. Both

the sparsity patterns and the magnitude of the coefficients are assumed to be ran-

domly distributed. Dictionaries are learned using different algorithms and the learned

dictionaries are compared with the ground truth. The training test is repeated for five

different training datasets to ensure fair comparisons. If the squared error between a

learned and true atom is below 1%, it is classified as correctly identified.

We compare the proposed method (DL-AL) against MOD [5], K-SVD [1], and

dictionary learning with majorize minimize algorithm (DL-MM) [22]. The implemen-

tations of K-SVD, MOD, and DL-MM were downloaded from the webpages of the

authors. The `0 norm of the sparse vectors in MOD and KSVD were set to k from

3 to 7, while we set λ = 0.1; p = 0.5; c = 1 for column-norm constraints and c = K

for Frobenius-norm constraints in DL-AL and DL-MM; these parameters yielded a
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sparsity approximately equal to k.

The average percentages and standard deviations of correctly recovered atoms

using dictionary learning methods with MM and AL under Frobenius-norm con-

straints are shown in Fig. 1(a) and using the four dictionary learning methods above

under column-norm constraints shown in Fig. 1(b). We observe that the DL-AL

scheme provides better recovery for almost all sparsity levels in the column-norm

dictionary constraints problem, compared to other methods. Besides, DL-AL scheme

with column-norm dictionary constraints performs better than that with Frobenius-

norm constaints.

Fig. 2 shows the average percentages and standard deviations of correctly

recovered atoms under both dictionary constraints for `1 norm and `p norm problems.

The results of `p norm problem present higher recovery for both constraints. The

comparison of execution times in Fig. 3 show that the complexity of the proposed

scheme grows much slower than the competing methods, making it desirable in large

scale imaging problems. We study the sensitivity of the algorithms to local minima

by initializing the dictionaries as random matrices with Gaussian (randn) or uniform

distributed entries (rand) in Fig. 4. The variance of the results are shown by the error

bars. We observe that the AL-DL method is relatively insensitive to the initialization,

resulting in smaller error bars and results that are insensitive to the distribution of

the initialization.
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(a) Frobenius-norm constraints
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Figure 4.1: Comparison of the dictionary recovery success rates using (a)MM and AL

dictionary learning methods with Frobenius-norm constraints; (b)K-SVD, MOD, MM, AL

dictionary learning methods with column-norm constraints. We observe that the proposed

scheme is able to provide good recovery at high sparsity levels, compared to classical meth-

ods.
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Figure 4.2: A comparison of the dictionary recovery success rates using AL dictionary

learning methods with `p norm and `1 norm sparse penalty term.
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Figure 4.3: A comparison of computation time of the algorithms as a function of the

sparsity. We observe that the computation time of the proposed algorithm increases at a

much lower pace than the competing algorithms.

3 4 5 6 7

0

20

40

60

80

100

Sparsity 

A
v
e
ra

g
e
 p

e
rc

e
n
ts

 o
f 
re

c
o
v
e
ry

 

 

AL−randn

AL−rand

KSVD−randn

KSVD−rand

MOD−randn

MOD−rand

Figure 4.4: A comparison of the dictionary recovery success rates using K-SVD, MOD, AL

dictionary learning methods with different dictionary initializations.
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4.2 Denoising Results for Real Data

4.2.1 2D Image Denoising

We demonstrate the utility of the dictionary learning scheme in denoising

brain MR image of size 256 × 256 in Figures 4.5 and 4.6; this approach exploits

the redundancy of the patches in the image. The original image in Fig. 4.5.(a) is

contaminated by a random zero-mean Gaussian noise with σ = 8 as shown in Fig.

4.5.(b). We extract all possible patches of size 6×6 from the contaminated image. The

dictionary is trained using one tenth of these patches. We use a random initialization

of the dictionary with 36 atoms. We expect the dictionary elements to be noise free,

thanks to the averaging of similar patches. Once the dictionary is estimated, all the

the noisy patches are denoised by considering their sparse approximation with the

learned dictionary. The final image is then recovered by the weighted averaging of

the image patches. We compare the quality of the denoised images in Fig. 4.5. The

quality of the reconstructed images are determined using the signal to noise ratio

(SNR) between the reconstruction and original images. The SNR of the images is

determined as

SNR = −10 log10

‖Irecon − Iorig‖2F
‖Iorig‖2F

(4.1)

where Irecon is the reconstructed image; Iorig is the original image; ‖·‖ is the Frobenius

norm.

We compare the convergence rate of the algorithms with respect to computa-

tion time in Fig. 4.6. The algorithms are implemented in MATLAB R2012a and run

on a Intel Xeon processor with 34 GB of RAM. We observe that the proposed scheme
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converge in around 15 seconds, while KSVD and MOD algorithms take around 300

seconds. The MM algorithm is observed to be the slowest. To make the competition

fare, the sparsity parameter in KSVD and MOD algorithms are set to four, while

the λ parameter in DL-MM and DL-AL algorithms are chosen such that the average

sparsity of the reconstructions is around four. We observe that the proposed DL-AL

scheme is much faster and capable of providing improved reconstructions; this may

be attributed to the quality of the learned dictionaries.

To test the sensitivity to initialization, we consider four different dictionary

initializations of size 36 × 36. They are the 2D DCT matrix, the identity matrix, a

random matrix with gaussian entries, and the Karhunen-Loeve Transform(KLT). Fig.

4.7 shows the objective function over computation time of the algorithm for different

initializations. The objective function converges very fast and has nearly identical

final values for all cases. This indicates that out algorithm is robust to initialization.

The next experiment is to evaluate the sensitivity of the proposed algorithm to

parameter choosing. There are three parameters needed to set: sparsity regularization

parameter (λ), patch size in square dictionary, and dictionary atom number(K).

We vary one parameter at a time with other parameters fixed at nominal values in

previous experiments. The top three figures in Fig. 4.8 show the results for column-

norm constraints and the rest ones for Frobenius-norm constraints. Fig. 4.8(a) plotted

SNR and average sparsity level versus λ. The sparsity level decreases as a function of

λ. On the other hand, SNR is increasing until λ = 65 and the corresponding sparsity

is around 4. The poorer performance at the low λ, that is high sparsity levels such as
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10, is due to learning aliasing artifacts and noise in the dictionary training. At low

sparsity levels, the algorithm loses resolution and more information of data thereby

degrading performance. The performance with respect to patch size is improved

when the patch size is increased from 4× 4 to 6× 6. However, when the size is higher

than 6 × 6, the SNR becomes decreasing. Also, the increase in patch size increases

average sparsity level. Therefore, using large patch size, we need to choose greater

λ to enforce lower sparsity to get good results. The SNR and average sparsity level

versus dictionary atom number are plotted in Fig. 4.8(c). The SNRs for dictionaries

of sizes 36× 16 to 36× 196 are lower than SNR with squre dictionary of size 36× 36,

but the change in sparsity is rather small. However, to get good denoising results,

we need to make the average sparsity lower since the dictionary with large number of

atom may contain more information of both original image and noise. Comparing Fig.

4.8(c) wirh Fig. 4.8(f), we notice that the algorithm with Frobenius-norm constraints

performs slightly better in SNR than that with column-norm constraints when the

atom number is high. To show the reason of this observation, Fig. 4.9 shows the

structure of learned dictionaries for both constraints when dictionary atom number is

K = 144. We find that the dictionary learned from column-norm constraints is more

noisy while the dictionary with Frobenius-norm constraints contains more information

from original image.
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(a) Original (b) K-SVD(24.5dB) (c) MM-Col(25.0dB) (d) MM-Fro(25.4dB)

(e) Noisy(20.5dB) (f) MOD(23.9dB) (g) AL-Col(26.6dB) (h) AL-Fro(26.55dB)

Figure 4.5: Comparison of the denoising performance of different algorithms. (a) and (e)

are the actual and noisy brain MR images, respectively. (b), (c), (d), (f), (g) and (h) show

the reconstructions using K-SVD, DL-MM with column-norm constaints, DL-MM with

Frobenius-norm constaints, MOD, DL-AL with column-norm constaints, and DL-AL with

Frobenius-norm constaints, respectively. Note that the DL-AL method provides improved

reconstructions, suggesting better learned dictionaries.

4.2.2 3D Image Denoising

In this experiment, we implement our algorithm to dynamic MRI denoising

which is important for many clinical exams such as cardiac, perfusion, and functional
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Figure 4.6: Comparison of the convergence of the different algorithms: (a) shows the

average representation error of K-SVD and MOD. (b) shows the objective functions of

DL-MM and DL-AL with column-norm constraints. (c) shows the objective functions of

DL-MM and DL-AL with Frobenius-norm constraints. Note that K-SVD and MOD aims to

minimize the representation error with a fixed sparsity, while DL-MM and DL-AL uses the

cost function specified (3.6).The plots show that the running time of the proposed algorithm

is much smaller than that of the competing algorithms.

imaging. Firstly, we represent the 3D dataset as a M×N matrix Y

YM×N =


y(δ1, t1) · · · y(δN , t1)
y(δ1, t2) · · · y(δN , t2)
· · · · ·
· · · · ·

y(δ1, tM) · · · y(δN , tM)


where M and N represent the number of voxels in one frame image and the number

of image frames in the dataset, respectively. From the structure of Y, the ith row

corresponds the reshaped ith frame image and the ith column corresponds the ith
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Figure 4.7: The objective function versus computation time using DCT, KLT, identity and

random dictionary initializaitions.

voxel in different frames. Using the matrix factorization idea, we model Y as
y(δ1, t1) · · · y(δN , t1)
y(δ1, t2) · · · y(δN , t2)
· · · · ·
· · · · ·

y(δ1, tM) · · · y(δN , tM)


︸ ︷︷ ︸

YM×N

=


d1(t1) · · · dK(t1)
d1(t2) · · · dK(t2)
· · · · ·
· · · · ·

d1(tM) · · · dK(tM)


︸ ︷︷ ︸

DM×K

×


x1(δ1) · · · x1(δN)
x2(δ1) · · · x2(δN)
· · · · ·
· · · · ·

xK(δ1) · · · xK(δN)


︸ ︷︷ ︸

XK×N

where K is the atom number of dictionary, the ith column of D (di(t)) represents

the ith temporal basis function and the ith row of X (xi(δ)) represents the ith spatial

weight.

Our goal is to reconstruct the dynamic image of size 128× 128× 70 from the
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Figure 4.8: Parameter evaluation. (a) SNR and average sparsity level versus λ. (b) SNR

and average sparsity level versus patch size for square dictionary. (c) SNR and average

sparsity level versus overcompleteness of dictionary.

noised image which is contaminated by a random zero-mean Gaussian noise. Fig 4.10

shows the comparisons on the perfusion MRI dataset with the standard deviation of

the measurement noise σ = 10. We observe that our algorithm provides about 4dB

improvement in SNR compared to K-SVD and MOD algorithms. The reconstructed

images by K-SVD and MOD suffer from noisy artifacts and blur, while the errors in

the our scheme are smaller and less concentrated at the edges, which represents much
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(a) DCT (b) Col (c) Fro

Figure 4.9: Structure of dictionaries of size 36 × 144. (a) the initialized dictionary us-

ing DCT. (b) the dictionary trained from DL-AL with column-norm constraints. (c) the

dictionary trained from DL-AL with Frobenius-norm constraints. From the figure (b), it

appears that some of the atoms obtained are very noisy and uninformative using column-

norm constraints on dictionary. However, We the dictionary in (c) contains more atoms

that correspond to the textured regions in the original image, indicating that the dictionary

adapts well to the content of interest.

edge detailed information is preserved.

Fig. 4.11 compares the convergence rate for different algorithms. It shows our

algorithm converges to a high SNR within 100 Sec for both column-norm constraints

and Frobenius-norm constraints. However, K-SVD and MOD need almost 4 times

running time, but even provide a worse SNR.

We study the relationship between SNR and dictionary atom number for both

column-norm and Frobenius-norm constrains in Fig. 4.12. We choose the optimal λ

such that the SNR for any K is optimal. When noise level is low (σ = 10) in Fig.
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4.12 (a), around 15 basis functions are needed to get the best SNR (also shown in Fig.

4.13) and the reconstructions are insensitive to the dictionary atom number beyond

15. Algorithms with both constraints give similar results in this case. However, Fig.

4.12 (b) shows that the algorithm with Frobenius-norm constraints performs much

better than the other one under heavy noise (σ = 50). This is due to modeling with

noisy basis functions. Note that the column-norm constraints enforce that all the

basis functions are ranked equally (see Fig. 4.13 (a)). In contrast, in the Frobenius-

norm constraints, the energy of the learned bases functions can vary considerably,

which means that the noisy and insignificant basis functions are enforced to very

small values (see Fig. 4.13 (c)).

We also implement the proposed algorithm with joint sparsity constrains on

this dynamic dataset. Fig. 4.14 shows the SNR convergence as a function of running

time. Compare with the results in Fig. 4.12 (b) at K = 45, the algorithm with `1-`2

norm constraints presents similar results as Frobenius-norm since they both can get

rid of insignificant dictionary atoms.
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(a) Original (b) MOD(23.2dB) (c) KSVD(23.4dB)

 

 

(d) AL-Col(27.6dB) (e) AL-Fro(27.3dB)

(f) Noisy(15.5dB) (g) MOD (h) KSVD (i) AL-Col (j) AL-Fro

Figure 4.10: Comparisons of the proposed scheme with different methods on one of spacial

frame when σ = 10. (a) and (f) are the actual and noisy images, respectively. (b), (c), (d)

and (e) show the reconstructions using MOD, K-SVD, DL-AL with column-norm constraints

and DL-AL with Frobenius-norm constraints, respectively. (g), (h), (i) and (j) show the

corresponding error images. Note that the DL-AL method performs better in denoising.
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Figure 4.11: Comparisons of Convergence in the case of dictionary atom size K = 45.

This figure shows SNR as a function of running time. Compared to K-SVD and MOD, our

scheme converges much faster.
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Figure 4.12: Evaluation of dictionary atom number K. (a) shows SNR as a function of

different dictionary atom sizes for low level noise σ = 10. (b) shows SNR as a function of

different dictionary atom sizes for heavy noise σ = 50.
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Figure 4.13: Dictionary temporal bases and corresponding spatial coefficients (σ = 10).

(a) and (b) show results from column-norm constants case. (c) and (d) show results from

Frobenius-norm constants case.
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Figure 4.13: Continued
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Figure 4.14: Results for joint sparsity constraints when K = 45 and σ = 50.
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CHAPTER 5
CONCLUSION

We introduced a novel augmented Lagragian based matrix factorization algo-

rithm for general matrix factorization problems. We focus on applying the proposed

scheme on dictionary learning, which is formulated as a sparsity penalized optimiza-

tion scheme, constrained by different dictionary constraints. And it is easy to extend

this algorithm to other matrix factorization problems as shown in this thesis. We

used the alternating minimization strategy to decouple the optimization problem

into three main sub-problems, each of which has efficient solutions. Comparisons of

the proposed scheme with other algorithm showed that the algorithm is capable of re-

covering the dictionaries at higher sparsity levels. Denoising experiments showed that

improved dictionaries translate to improved reconstructions. Numerical experiments

also considerably improved computational efficiency.
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